Given any expression of the form \(a\cos x + b\sin x\) it is better to rewrite it into one of the forms \(k\cos (x \pm \alpha )\) or \(k\sin (x \pm \alpha )\) before answering the question. From this ...
An object is moving counter-clockwise along a circle with the centre at the origin. At \(t=0\) the object is at point \(A(0,5)\) and at \(t=2\pi\) it is back to point \(A\) for the first time.
Find \(\ds \lim_{h\to 0}\frac{f(1+h)-f(1)}{h}\) where \(\ds f(x)=\frac{3x+1}{x-2}\text{.}\) What does the result in (a) tell you about the tangent line to the graph ...
Note: This only works when \(x\) is measured in radians. We are now going to look at more complex trigonometric functions where we will use the general rule: \(\int {\cos (ax + b)dx = \frac{1}{a}} ...
Results that may be inaccessible to you are currently showing.
Hide inaccessible results
Feedback